
Future Generation Computer Systems 22 (2006) 324–335

A performance model of non-deterministic particle
transport on large-scale systems

Mark M. Mathisa,b, Darren J. Kerbysona,∗, Adolfy Hoisiea

a Performance and Architecture Lab (PAL), CCS-3, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
b Department of Computer Science, Texas A&M University, 301 Harvey R. Bright Building, College Station, TX 77843-3112, USA

Available online 28 December 2004

Abstract

In this work we present a predictive analytical model that encompasses the performance and scaling characteristics of a non-
deterministic particle transport application, MCNP (Monte Carlo N-Particle), that represents part of the Advanced Simulation
and Computing (ASC) workload. MCNP can be used for the simulation of neutron, photon, electron, or coupled transport, and

lo methods
eractions
t common

rformance
nd system

validated
mbinations.
thousands

the impact

for
led
nd
eac-
re is
istic
ose
has found uses in many problem areas including nuclear reactors, radiation shielding, and medical physics. Monte Car
in general and MCNP specifically do not solve an explicit equation, but rather obtain answers by simulating the int
between individual particles and a predefined geometry. This is in contrast to deterministic transport methods, the mos
of which is the discrete ordinates method, that solve the transport equation directly for the average particle behavior.

Previous studies on the scalability of parallel Monte Carlo calculations have been rather general in nature. The pe
model developed here is both detailed and parametric with both application characteristics (e.g. problem size), a
characteristics (e.g. communication latency, bandwidth, achieved processing rate) serving as input. The model is
against measurements on an AlphaServer ES40 system showing high accuracy across many processor/problem co
The model is then used to provide insight into the achievable performance that should be possible on systems containing
of processors and to quantify the impact that possible improvements in sub-system performance may have. In addition,
on performance of modifying the communication structure of the code is also quantified.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Performance modeling; Performance analysis; Large-scale systems

1. Introduction

MCNP is a general purpose Monte Carlo N-Particle
code that represents part of the Advanced Simulation

∗ Corresponding author.
E-mail address: djk@lanl.gov (D.J. Kerbyson).

and Computing (ASC) workload. It can be used
the simulation of neutron, photon, electron, or coup
transport[3]. Particle transport simulation has fou
uses in many problem areas including nuclear r
tors, radiation shielding, and medical physics. The
currently great interest in the use of non-determin
particle simulation on large-scale systems—both th

0167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2004.11.018



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 325

that currently exist as well as future advanced systems
being proposed. In this work we develop a detailed an-
alytical performance model of MCNP. A performance
model of an application can be used for much more
than just predicting the time that will be required to
run the application on a particular system. It can also
be used “in reverse” to determine what size problem
can be solved in a fixed time allocation on a particular
system. Performance models can also assist users in se-
lecting appropriate systems to use, or acquire, that are
suited to their applications[9], or to detect problems
in the installed system if the actual times do not match
the predictions[10]. A performance model can also be
used to identify bottlenecks in the code and to make
recommendations for its future development.

We primarily take an analytical approach to perfor-
mance modeling based on task graphs which seek to
capture the performance characteristics of an applica-
tion through an examination of its key data structures
and computational flows. The model consists of two
fundamental parts: a computation model and a system
model. The computation model represents the compu-
tation activities of the actual application, or more pre-
cisely the part of the application that consumes the bulk
of the execution time. The computation model is based
on a static analysis of the key portions of the code but
i the
p psu-
l nica-

al (b) c

tion (e.g. network latency and bandwidth) and compu-
tational performance (e.g. processor speed). The two
parts of the model are kept separate so the model can
be re-used without alteration to explore a multitude of
performance scenarios. For instance, one may evalu-
ate a different problem by setting the appropriate in-
put parameters to the computation model, or evaluate
a new machine by changing the system model. A sim-
ilar modeling approach has been used to model other
large-scale applications including deterministic trans-
port on structured and unstructured meshes[6,8,13,14],
and adaptive mesh refinement[7,9]. A third part of a
performance model can be identified corresponding to
the data on which the application operates. In this work,
we have made the simplifying assumption that all data
is local to the processors at the time of computation,
thus alleviating the need for a separate data model. In
general, however, this will not be the case and the data
must be considered independently.

Criticality may be defined as that state of a nuclear
chain-reacting medium when the nuclear fission chain
reaction just becomes self-sustaining (critical). Criti-
cality safety is a vital part of the storage, transporta-
tion, and processing of fissionable materials. MCNP
includes the capability to calculate eigenvalues for criti-
cal systems and forms the problem studied in this work.

ated
on-
s of
s parameterized in terms of the data specific to
roblem being simulated. The system model enca

ates key system characteristics such as commu

Fig. 1. Horizontal (a) and vertic
 ross-sections of example geometry.

Our example input geometry consists of an insul
barrel containing a number of hollow rods of fissi
able material. Horizontal and vertical cross-section



326 M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335

the geometry are shown inFig. 1. The shading is used
to indicate the different material properties of each rod
and also of the insulated barrel. The hollow portion of
the rods are indicated as white. The goal of the simula-
tion is to determine if the arrangement of rods is safe,
i.e. non-critical. Previous studies on the scalability of
parallel Monte Carlo eigenvalue calculations have been
rather general in nature[16]. The performance model
developed here is both detailed and parametric with
both application characteristics (e.g. input geometry,
problem size), and system characteristics (e.g. commu-
nication latency, bandwidth, achieved processing rate)
serving as input.

The remainder of this paper is organized as follows.
In Section2 we further describe MCNP and the Monte
Carlo method of non-deterministic particle transport. In
Section3 we develop our performance model through
an examination of MCNP’s key data structures and
computational flows. Our performance model consists
of separate computation and system models as de-
scribed in Sections3.1 and 3.2, respectively. Following
the validation of the model in Section3.3we then use
the model in Section4 to predict the performance of
MCNP in various performance scenarios. Finally, we
conclude the paper in Section5. This work represents
an extension of work presented in[15].

of
rld
ted
st
the

rep-
rsion
gly,
n-

bu-
in-

cifi-
tain
indi-
ccu-
the

eral,

the error in the calculation reduces as the square root of
the number of particles. This is in contrast to determin-
istic transport methods, the most common of which is
the discrete ordinates method, that solve the transport
equation directly for the average particle behavior over
structured[11,12]or unstructured[19,22]meshes. The
input geometry for MCNP consists of a collection of
cells defined as combinations of primitive shapes such
as planes, cylinders and spheres. The material proper-
ties are retrieved from an external library. The behavior
of each simulated particle and its interaction with the
materials travelled through, as defined by the geome-
try, are recorded to produce a particlehistory. During
this process, statistical information about certain events
is gathered in histograms ortallies. The interaction of
each particle and geometry can result in several events
such as neutron/photon scatter, capture, and leakage.

The current parallelization strategy of MCNP re-
quires the geometry to be copied to all processors and
thus the complexity of the geometry is constrained by
the memory available in a single processing node[4].
Parallelism can be utilized to either solve the same
problem faster by sub-dividing the number of simu-
lated particles across all processors (strong scaling),
or to give a more accurate simulation by simulating
more particles in proportion to the number of proces-

ro-
e end
from
-
high
per-
t to
the
(the
tal-

pli-

r di-
lave
n are
ter”
s re-
2. Overview of MCNP

MCNP can trace its roots back to the invention
the Monte Carlo method at Los Alamos during Wo
War II. The Monte Carlo method is generally attribu
to Metropolis and Ulam[18] and was one of the fir
application programs to run on early computers in
1950s. MCNP is the successor to their work and
resents over 450 person-years of development. Ve
4C of MCNP was used in this analysis. Interestin
the “Metropolis algorithm”, a dynamic method of ge
erating variables with an arbitrary probability distri
tion used in many Monte Carlo simulations, was
vented at a Los Alamos dinner party in 1953[17].

Monte Carlo methods in general and MCNP spe
cally do not solve an explicit equation, but rather ob
answers by simulating the interactions between
vidual particles and a predefined geometry. The a
racy of the calculation increases in proportion to
number of particles used in the simulation. In gen
sors (weak-scaling). During a cycle of MCNP, each p
cessor simulates a designated set of particles. At th
of a cycle, a single processor merges the results
all other processors during arendezvous. This commu
nication pattern requires several steps and a fairly
degree of coordination. Note that the achievable
formance of MCNP is both input sensitive (the cos
simulate a particle depends on the complexity of
geometry and materials used) and output sensitive
complexity of the output depends on the requested
lies).

3. Analytical performance model of MCNP

MCNP is representative of a general parallel ap
cation paradigm known as master–slave (e.g.[23]). In
this paradigm, a master process is responsible fo
viding the work to be done across a number of s
processes. Work assignments and state informatio
distributed from master to slaves during a “scat
phase at the start of each cycle. Once the slave



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 327

ceive their assignments they may begin their local com-
putation. When the slaves have completed their work,
they report their results to the master during a “gather”
phase. The master then aggregates the results from all
the slaves and a new cycle begins. The “scatter” and
“gather” phases may actually consist of a sequence of
messages. For MCNP the scatter phase consists of two
communications, and the gather phase consists of five
communications.

The overall communication pattern of MCNP can be
analyzed using task graphs (e.g.[5,21]). In this work
thestatic parallel structure of a computation is captured
using a static task graph, or STG[1] (Fig. 2(a)). The
vertices of the STG can represent computation, com-
munication, control flow, or function calls. InFig. 2,
the shaded nodes designate slave activities and the un-
shaded nodes represent master activities. Likewise, the
edges represent control flow dependences or commu-
nication dependences. InFig. 2dashed edges indicate
communications between processors and solid edges
represent control flow and/or data dependence on a
processor. Each dashed edge is labeled according to
the “stages” of a cycle as listed inTable 1.

The STG can be expanded to adynamic task graph
or DTG for a particular instance of the application by
evaluating all control flow nodes according to the ap-
p t in-
s n
w tion
i the
n the
c the
n his-
t or
a the
D For
c for
c

eral
k of
M ave
p ticle
s
p een
s ntly
o ls a
w oach
i

master. Although the work can be done in parallel, the
gather phase of the application is effectively serialized.
Another problem with the master–slave approach also
encoded in the DTG, although less apparent, is that
the entire input geometry must be replicated across
all processors. This can be inferred from the fact that
no communication exists during the work phase of the
application.

From this initial analysis, we can predict that the
performance of MCNP will scale well up to a medium
number of processors until communication costs domi-
nate the execution time and then fall off quickly. Indeed,
this situation is inherent to the master–slave approach in
general and to parallel Monte Carlo eigenvalue calcu-
lations specifically[16]. The first limitation (commu-
nication serialization) could be potentially mitigated
by altering the manner in which much of the data is
reported to the master. The second (data replication)
could be overcome by distributing the geometry and
allowing communication between slaves, to relay ge-
ometry or particle information. However, this would
involve major changes in the code.

It is worth noting that the task graph technique is
general and can be used to model an arbitrary appli-
cation. The structure of this particular application hap-
pens to be master–slave. The approach presented here

es
am-
tion.
tion
rticle
se.

ation
an-

ese
ex-
r to
ation
ata

nce
tiv-

ion
nd-
lication inputs and processor count specific to tha
tance (Fig. 2(b)). The dynamic factors are only know
hen a particular problem and processor configura

s known. These include the processor count and
umber of particles to be simulated per cycle. In
ase of MCNP, the important input parameters are
umber of processors and the number of particle

ories. InFig. 2, the STG for MCNP is evaluated f
n instance utilizing four processors. Notice that
TG isacyclic (i.e., all loops have been removed).
larity, the DTG also shows the parameter values
ommunication and computation events.

The DTG in particular makes apparent sev
ey characteristics that affect the performance
CNP. First, MCNP is well-suited to the master–sl
aradigm due to the independent nature of par
imulation. As can be seen inFig. 2(b), during the work
hase of MCNP there is no communication betw
laves (i.e., any particle is simulated independe
f any other particle). Second, the DTG revea
eakness of MCNP and the master–slave appr

n general:all communication must go through the
will work equally well with other program structur
(e.g. red-black stencil, sweep, etc.). As a further ex
ple, consider the proposed solution to data replica
This would require some frequency of communica
between slaves and/or a central geometry or pa
server (possibly distributed) during the work pha
Using the task graph technique these communic
events can be included in the analysis in a direct m
ner, thus altering the final form of the model. Th
modifications could also be incorporated using an
plicit data model. In this case, the data will appea
be local to each processor and the model evalu
will be responsible for determining the cost of all d
accesses.

3.1. Computation model

The computation component of the performa
model includes only those portions of the parallel ac
ity that significantly contribute to the overall execut
time. The main stages of a cycle of MCNP correspo
ing to those depicted inFig. 2 are listed inTable 1.



328 M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335

Fig. 2. Static (a) and dynamic (b) task graphs for MCNP.



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 329

Table 1
Summary of the parallel activity in one cycle of MCNP

Phase Source Action Weight Description

Scatter 1 M bcast P ∗ 8 Broadcast particle ranges
2 M bcast 229240 Broadcast updates to histories

Work 3 S work Thist ∗
⌈

Nph
P−1

⌉
Slaves compute particle histories

Gather 4 S pt2pt 5512 Slaves report common task data
5 S pt2pt 320 Slaves report individual tally data
6 S pt2pt 204920 Slaves report first task array

7 S pt2pt 48∗
⌈

Nph
P−1

⌉
Slaves report second task array

8 S pt2pt 32 slaves report timing data

M: master, S: slave(s).

The table summarizes the event source (either master
or slave), its type (either collective broadcast, point-
to-point communication, or computation), and also the
weight associated with the event for each stage of the
cycle. The weight is in bytes for all communication
events (message sizes), and in terms of the number of
particle histories for the computation events. The val-
ues determine the weight of the nodes and edges in
Fig. 2. The sizes of some of the messages are depen-
dent upon the actual problem being solved. These sizes
must be measured prior to the use of the model.

The first task array message (stage 6 inTable 1) is
constant for each input geometry and the requested tal-
lies. The tally data message (stage 5) can be calculated
simply as the word size (8) times 2 plus the number
of requested tallies (38 for this problem). The constant
48 involved in the task array 2 message (stage 7) was
obtained by run-time measurement. This is related to
the average number of collisions experienced by each
particle. A good approximation of this constant can be
obtained from a small test run of the code.

The execution time for a single cycle of MCNP can
be modeled as:

Ttotal(P, Nph, Thist)

= T (P) + T (P, N , T )

w t-
t
r nce
t chro-
n d the
s s to

the master. Each cycle begins with a scatter phase:

Tscatter(P) = Tbcast(P ∗ 8, P) + Tbcast(229420, P),

(2)

where the time to perform the collective broadcast oper-
ation,Tbcast(S, P), is the time taken to broadcastS bytes
acrossP processors on the target system. The scatter
phase corresponds to the first two stages inTable 1.

The work phase, performed on each slave, can be
modeled as:

Tslave(P, Nph, Thist) =
⌈

Nph

P − 1

⌉
∗ Thist, (3)

whereNph is the number of particle histories per cycle
which are divided amongst theP − 1 slave processors.
In general, it is more accurate to take the computation
time for the slowest slave. However, since each slave is
responsible for an equal number of particles, we assume
that all slaves will take the same time. The time to
perform a single particle history,Thist, can be measured
on a single processor for the problem being solved.

The gather phase can be modeled as:

Tgather(P, Nph)

P−1∑ (

scatter slave ph hist

+ Tgather(P, Nph), (1)

here the cycle time,Ttotal, is a summation of the sca
er, work, and gather phases—Tscatter,Tslave, andTgather,
espectively. The form of this model is additive si
he gather and scatter stages are in general syn
ized by the bottleneck caused by the master, an
erialization of the communication from the slave
=
i=1

Tpt2pt(5512, i, 0) + Tpt2pt(320, i, 0)

+ Tpt2pt(204920, i, 0)

+ Tpt2pt

(
48∗

⌈
Nph

P − 1

⌉
, i, 0

)

+ Tpt2pt(32, i, 0)

)
, (4)



330 M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335

whereTpt2pt(S, src, dest) is the time required to com-
municate a message of sizeS bytes from processor src
to processor dest. The five point-to-point communica-
tions, listed as stages 4–8 inTable 1, are effectively
performed in a serialized way for all slaves due to the
master bottleneck. However, an examination of the cur-
rent messaging within MCNP indicates that some of the
data transferred between slaves and the master (specif-
ically stages 4, 5, part of 6, and 8 inTable 1) can be
implemented as collective reductions. If we assume that
all of stages 4, 5, and 8 as well as half of stage 6 can be
implemented as reductions, Eq.(4) can be re-written
as

Tgather(P, Nph)

=
P−1∑
i=1

(
Tpt2pt(102460, i, 0)

+ Tpt2pt

(
48∗

⌈
Nph

P − 1

⌉
, i, 0

))

+ Treduce(5512, P) + Treduce(320, P)

+ Treduce(102460, P) + Treduce(32, P), (5)

whereTreduce(S, P) is the time required to perform a
reduction ofS bytes usingP processors.

t-to-
es,

d to
em-
tion
g li-
PS

ack-
built
s in
av-
a

e ex-
ssors
sors.
av-
ain
drics

Table 2
Summary of system model parameters for the AlphaServer ES40 (S
in bytes)

Tpack(S) (ns) Lc(S) (�s),Bc(S) (MB/s) Thist (s)

0.12,S < 32K 5.05, 0.0,S < 64 7.98× 10−4

0.16, 32K ≤ S ≤ 4M 5.47, 78, 64≤ S < 512
0.67,S > 4M 10.3, 294,S ≥ 512

QsNet-1 high-performance network[20]. This network
boasts high-performance communication with a typical
MPI latency of 5�s and a throughput of up to 340 MB/s
per communication direction.

Measured MPI latency and bandwidth for inter-
node unidirectional communication (point-to-point)
were obtained using in-house micro-benchmarks. The
collective broadcast and reduction operations forP
processors can be assumed to take at most log2(P)
times that of a single point-to-point communication.
The communication costs also include packing opera-
tions, implemented in UPS. The point-to-point, broad-
cast, and reduction communication operations are
modeled as

Tpt2pt(S, src, dest)= Tpack(S) + Lc(S) + S/Bc(S),

(6)

Tbcast(S, P) = Tpt2pt(S) ∗ log2(P), (7)

Treduce(S, P) = Tpt2pt(S) ∗ log2(P), (8)

whereS is the size of the message in bytes,Tpack(S) the
time to packS bytes,Lc(S) andBc(S) the latency and
bandwidth of a message of sizeS bytes. The parameters
used in the system model are summarized inTable 2

ade
y—
ure-

,
ange
e ge-

ssing
3.2. System model

The computation model as formulated in Section3.1
requires components in the system model for poin
point communication times, collective broadcast tim
collective reduction operations, the time require
perform a single particle history, and also the m
ory performance of a single node (for communica
packing). MCNP actually uses the UPS messagin
brary[2] for communication between processors. U
provides a generic interface with a retargetable b
end. It allows a message of arbitrary length to be
from many smaller variables using packing function
a similar way to that of PVM—a feature that is he
ily utilized in MCNP. In the analysis that follows
32-node AlphaServer ES40 cluster is used as th
perimental testbed. This machine has four proce
per node with a total machine size of 128 proces
Each processor is an EV68 running at 833 MHz, h
ing an 8 MB level 2 cache. Each node has 8 GB of m
memory. The nodes are connected using the Qua
for the AlphaServer ES40 cluster.

3.3. Performance model validation

The model is validated against measurements m
on our testbed system showing high accurac
approximately 10% error across all cases. Meas
ments and predictions are shown inFig. 3 for seven
sets of particle histories per cycle (Nph = 100, 500
1000, 5000, 10,000, 50,000, and 100,000) on a r
of processor counts (a strong-scaling analysis). Th
ometry is the same for all runs. Note that for smallNph,
the communication costs soon dominate the proce
time, resulting in poor scalability. For largeNph, the



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 331

Fig. 3. Measured and predicted times for small (a) and large (b) inputs.

scalability is better up to a higher processor count. Also
note that the performance characteristics correspond to
our task graph analysis in Section3. The performance
of MCNP indeed scales very well up to a moderate
number of processors and then falls off quickly once
communication costs dominate the execution time.

4. Performance study of MCNP

Once the model has been validated and shown to
provide reasonable prediction accuracy, the model may
be used to explore the performance of the application
on systems and configurations that are not possible to
be measured. In this section the model is used to explore
the performance of MCNP on larger configurations of
current ES40 systems. It is also used to explore the pos-
sible improvements resulting from refining the code to
make use of reduction operations as suggested in Sec-
tion 3.1. The model is further utilized to investigate
the performance of future systems assuming perfor-
mance improvements in individual sub-system char-
acteristics such as latency, bandwidth, and processor
speed.

4

lore
t S40

systems inFig. 4 for both strong and weak-scaling
modes. As the processor count increases in the strong
scaling mode, the amount of work per slave decreases
and hence communication costs soon become a sig-
nificant percentage of the overall run-time. In weak-
scaling, as the processor count increases the amount
of computation per processor is constant and thus the
overall run-time increases more gradually due to in-
creased communication costs. Overall it can be seen
that in a strong-scaling mode, MCNP scales up to 512
processors on the problem being studied forNph =
1 × 106. In weak-scaling, the performance of MCNP is
much better and actually scales up to 8192 processors
for Nph = P × 103.

The component time information is also shown in
Fig. 5 for both the strong-scaling and weak-scaling
modes. The major contribution to the total time changes
from primarily computation for low numbers of proces-
sors to primarily communication for large numbers of
processors. It is also clear that one message (task array
1) dominates the communication time.

4.2. Performance prediction of future systems

Using the model, the expected performance of
e re-
mod-
ther
im-
.1. Scaling behavior of larger systems

The MCNP performance model is used to exp
he expected performance on larger AlphaServer E
MCNP can be examined in advance of possible cod
finements. Here we examine the case of the code
ifications of using reduction operations in the ga
phase.Fig. 6 shows the expected performance



332 M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335

Fig. 4. Expected cycle times on ES40 systems for strong (a) and weak (b) scaling.

provement for MCNP in both strong-scaling and weak-
scaling modes. It can be seen that the scalability is im-
proved by approximately a factor of two for the highest
processor count. This indicates that should the code be
modified then there will be a beneficial impact on its
scalability.

The impact of system performance improvements
on the run-time of MCNP can also be quantified in
advance of such systems being available. Here we ex-

Fig. 5. Component time predictions for MCNP on larger Alph .

amine a number of what-if scenarios by considering
the performance of the communication and computa-
tion sub-systems to be improved individually by a fac-
tor of 8. This is achieved by modifying the parameters
in the system model. The factor of 8 was chosen to
be indicative of what may happen to these sub-system
performances over the next 5 years. The relative im-
provement over the existing ES40 system is shown in
Fig. 6. Also included inFig. 6 is the relative perfor-
aServer ES40 systems under strong (a) and weak (b) scaling



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 333

Fig. 6. Relative impact of improved computation and communication capabilities for strong (a) and weak (b) scaling.

mance improvement that could be obtained if just the
modifications to the code as described in Section3.1
were implemented.

It can be seen fromFig. 6 that an increase in com-
putation capability has a much greater impact on per-
formance for small numbers of processors, but rapidly
declines as the number of processors is increased. Sim-
ilarly on larger processor counts, the increase in com-
munication capability will have a larger impact (due to
communication constituting a larger percentage of the
execution time as the number of processors increases).
Various other performance scenarios can be examined
in a similar way.

5. Conclusion

In this work we have developed a detailed analytical
performance model for MCNP. The model includes the
main code characteristics and separates out the compu-
tation and system characteristics. The model is based
on a static analysis of the application but is parameter-
ized in terms of its dynamic behavior. Through a vali-
dation process on a 32-node AlphaServer ES40 cluster,
we have shown the model to be accurate with a typical
error of 10%.

f per-
f odel
w S40

systems. This analysis showed that in a weak-scaling
mode the application will scale to thousands of proces-
sors whereas in a strong-scaling mode the application
scales to only hundreds of processors.

The performance of MCNP was also examined for
the case of modifying the communication structure
in the application to include the use of collective re-
ductions. This analysis indicated that the performance
could be improved on large processor counts if such
modifications were implemented. In addition, the per-
formance of MCNP was examined on a number of hy-
pothetical systems which included faster computation
or communication sub-systems. It was shown that in-
creases in computation speed have the greatest effect on
smaller processor counts, and increases in communica-
tion speed have the greatest effect on larger processor
counts.

Through these analyses the benefits of developing
a performance model of an application have been il-
lustrated. Once a model has been validated it can be
used to predict performance on systems or configura-
tions that cannot be measured. The model has been
used to analyze many scenarios in this work, and will
be used to explore the performance on future machines
as they become available. The model is part of an ongo-
ing effort to model the ASC workload and complements

t on
ptive
The model has been used to explore a number o
ormance scenarios. In a scalability analysis, the m
as used to give expected performance on larger E
existing models for deterministic particle transpor
structured and unstructured meshes and for ada
mesh refinement applications.



334 M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335

Acknowledgements

This work was supported in part by LDRD
2001609DR “Performance Analysis and Modeling of
Extreme-Scale Parallel Architectures”. Mark Mathis
is currently a PhD student at Texas A&M University
under the guidance of Nancy Amato and is supported
in part by a Department of Energy High Performance
Computer Science Fellowship. Los Alamos National
Laboratory is operated by the University of Califor-
nia for the U.S. Department of Energy under contract
W-7405-ENG-36.

References

[1] V.S. Adve, M.K. Vernon, Parallel program performance pre-
diction using deterministic task graph analysis, ACM Trans.
Comput. Syst. 22 (1) (2002) 94–136.

[2] R. Barrett, M. McKay, UPS: Unified Parallel Software User’s
Guide and Reference Manual, Los Alamos National Labora-
tory, 2002.

[3] J.F. Briesmeister, MCNP™—A General Purpose Monte
Carlo N-Particle Transport Code, Version 4C, Technical Re-
port LA-13709-M, Los Alamos National Laboratory, April
2000.

a-

ess-
A,

scal-
sing
rm.

ser-
ility
f the

ng of
lysis

nced
Ar-

ssors

rge-
del-

om-
43–

st-
ively

parallel processor, Trans. Am. Nucl. Soc. 65 (108) (1992) 198–
199.

[12] E.E. Lewis, W.F. Miller, Computational Methods of Neutron
Transport, American Nuclear Society Press, LaGrange Park,
IL, 1993.

[13] M.M. Mathis, N.M. Amato, M.L. Adams, A general perfor-
mance model for parallel sweeps on orthogonal grids for par-
ticle transport calculations, in: Proceedings of the ACM Inter-
national Conference on Supercomputing (ICS), Santa Fe, May
2000, pp. 255–263.

[14] M.M. Mathis, D.J. Kerbyson, Performance modeling of un-
structured mesh particle transport calculations, in: Proceedings
of the International Parallel and Distributed Proceedings Sym-
posium (IPDPS), Santa Fe, April 2004.

[15] M.M. Mathis, D.J. Kerbyson, A. Hoisie, A performance
model of non-deterministic particle transport on large-scale
systems, in: Proceedings of the International Conference
on Computational Science (ICCS), Part 3, Melbourne, June
2003.

[16] S. Matsuura, R.N. Blomquist, F.B. Brown, Parallel Monte Carlo
eigenvalue calculations, Trans. Am. Nucl. Soc. 71 (1994) 199–
202.

[17] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E.
Teller, Equation of state calculation by fast computing ma-
chines, J. Chem. Phys. 21 (1953) 1087–1092.

[18] N. Metropolis, S. Ulam, The Monte Carlo method, J. Am. Stat.
Assoc. 44 (1949) 335–341.

[19] S.D. Pautz, An algorithm for parallelSN sweeps on unstructured
meshes, J. Nucl. Sci. Eng. 140 (2) (2002) 111–136.

[20] F. Petrini, W.C. Feng, A. Hoisie, S. Coll, E. Frachtenberg,
The quadrics network: high-performance clustering technol-

ill,
m de-
Prin-
, pp.

allel
Pro-
em-

gh-
of

e
r-
ce
ling
re-
gh
hip
s at
[4] L.J. Cox, DMMP Upgrade for MCNP4C™, Los Alamos N
tional Laboratory Research Note, April 2001.

[5] E.F. Gehringer, D.P. Siewiorek, Z. Segall, Parallel Proc
ing: The Cm* Experience, Digital Press/DEC, Bedford, M
1986.

[6] A. Hoisie, O. Lubeck, H.J. Wasserman, Performance and
ability analysis of teraflop-scale parallel architectures u
multidimensional wavefront applications, Int. J. High Perfo
Comput. Appl. (HPCA) 14 (4) (2000) 330–346.

[7] D.J. Kerbyson, H.J. Alme, A. Hoisie, F. Petrini, H.J. Was
man, M.L. Gittings, Predictive performance and scalab
modeling of a large-scale application, in: Proceedings o
IEEE/ACM Supercomputing, Denver, November 2001.

[8] D.J. Kerbyson, A. Hoisie, S.D. Pautz, Performance modeli
deterministic transport computations, in: Performance Ana
and Grid Computing, Kluwer, 2003, pp. 21–39.

[9] D.J. Kerbyson, H.J. Wasserman, A. Hoisie, Exploring adva
architectures using performance prediction, in: Innovative
chitecture for Future Generation High-performance Proce
and Systems, IEEE CS Press, 2002, pp. 27–37.

[10] D.J. Kerbyson, A. Hoisie, H.J. Wasserman, Veryfying la
scale system performance during installation using Mo
ing, in: High Performance Scientific and Engineering C
puting Hardware/Software Support, Kluwer, 2003, pp.
156.

[11] K.R. Koch, R.S. Baker, R.E. Alcouffe, Solution of the fir
order form of the 3D discrete ordinates equation on a mass
ogy, IEEE Micro 22 (1) (2002) 46–57.
[21] K. Pingali, M. Beck, R. Johnson, M. Moudgill, P.L. Stodgh

Dependence flow graphs: an algebraic approach to progra
pendencies, in: Proceedings of the ACM Symposium on
ciples of Programming Languages (POPL), Orlando, 1991
67–78.

[22] S. Plimpton, B. Hendrickson, S. Burns, W. McLendon, Par
algorithms for radiation transport on unstructured grids, in:
ceedings of the IEEE/ACM Supercomputing, Dallas, Nov
ber 2000.

[23] J.M. Schopf, Structural prediction models for hi
performance distributed applications, in: Proceedings
the Cluster Computing Conference, Atlanta, March 1997.

Mark M. Mathis is a PhD candidate in th
Parasol Laboratory at Texas A&M Unive
sity. His interests lie in high performan
computing systems, performance mode
and analysis. Mr. Mathis is an inaugural
cipient of the Department of Energy Hi
Performance Computer Science Fellows
and recent collaborator with researcher
Los Alamos National Laboratory.



M.M. Mathis et al. / Future Generation Computer Systems 22 (2006) 324–335 335

Darren Kerbyson is currently a researcher
in the Performance and Architecture Lab at
Los Alamos. Prior to this he was a senior
Lecturer in Computer Systems at the Uni-
versity of Warwick in the UK. He has been
active in the areas of performance modeling,
parallel and distributed processing systems,
and image analysis for the last 15 years.
He has worked on many performance orien-
tated projects funded by the European Es-
prit program, UK Government, ONR, and

DARPA. He has published over 70 papers in these areas and has
taught courses at undergraduate and postgraduate levels as well as
supervising numerous PhD students. He is currently involved in the
modeling of large-scale applications on current and future supercom-
puters at Los Alamos. He is a member of the ACM and the IEEE.

Adolfy Hoisie is a Staff Scientist and the
group leader of the Modeling, Algorithms,
and Informatics Group in the Computer and
Computational Sciences Division at LANL.
He also leads the Performance and Architec-
tures Laboratory. From 1987 until he joined
LANL in 1997, he was a researcher at Cor-
nell University. His area of research is per-
formance evaluation of high-performance
architectures. He has published extensively,
lectured at numerous conferences and work-

shops, often as an invited speaker, and taught tutorials in this field
at important events worldwide. He was the winner of the Gordon
Bell Award in 1996, and co-author to the recently published SIAM
monograph on performance optimization.


	A performance model of non-deterministic particle transport on large-scale systems
	Introduction
	Overview of MCNP
	Analytical performance model of MCNP
	Computation model
	System model
	Performance model validation

	Performance study of MCNP
	Scaling behavior of larger systems
	Performance prediction of future systems

	Conclusion
	Acknowledgements
	References


